Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Physical-chemical constraints on cyanobacterial growth in the Oceans

Identifieur interne : 00C666 ( Main/Exploration ); précédent : 00C665; suivant : 00C667

Physical-chemical constraints on cyanobacterial growth in the Oceans

Auteurs : H. W. Paerl [États-Unis]

Source :

RBID : Pascal:00-0054123

Descripteurs français

English descriptors

Abstract

Cyanobacteria are significant and at times dominant contributors to estuarine, coastal and open ocean primary production and fixed nitrogen inputs. CO2 and N2 fixation can be controlled by single or combined nutrient supplies, depending on the influence of external vs. internal inputs. Nitrogen limitation characterizes much of the world's oceanic surface waters, providing a vast niche for cyanobacteria capable of N2 fixation. The filamentous planktonic N2 fixers, Trichodesmium and Richelia (endosymbiont in the diatom Rhizosolenia) can form large (< 100's of km2) surface blooms in nutrient-deplete, oligotrophic open ocean waters. Here, the availability of iron (Fe), a cofactor in the N2 fixing enzyme complex nitrogenase, may control N2 fixation, as shown subtropical W. Atlantic and Caribbean waters. The picoplanktonic (< 5 μm) genera Synechococcus, Synechocystis, and Prochlorococcus are important (i.e., 20 to > 50%) contributors to phytoplankton productivity and biomass. These non N2 fixers rely on small size (i.e., high surface to volume ratio) and efficient light harvesting abilities, to optimize growth in poorly-illuminated, nutrient-rich deep waters. Marine cyanobacteria exhibit various morphological, physiological, and ecological strategies aimed at co-optimizing diazotrophy, photosynthesis and nutrient (N, P, Fe) sequestration. These include; buoyancy regulation to facilitate access to near-surface sunlight (energy) and nutrient-rich deeper water, aggregation as colonies supporting nutrient-exchanging consortial interactions with microheterotrophs and invertebrate grazers, endosymbioses, intracellular nitrogen and phosphorus storage, heterotrophic and photoheterotrophic capabilities. Certain cyanobacterial genera can exploit nutrient-enriched estuaries and seas (e.g. Baltic), sometimes as persistent nuisance (i.e. hypoxia/anoxia-generating, toxic) blooms. If N2 fixing cyanobacteria predominate as planktonic blooms (Nodularia, Aphanizomenon) or benthic mats (Lyngbya, Oscillatoria), or if high rates of external N loading occur, N+P co-limitation or exclusive P limitation may dominate. In non-N2 fixing communities, Fe may synergistically interact with combined N, especially NO3-, to enhance growth. Increasing anthropogenic N and Fe enrichment (runoff, atmospheric deposition, groundwater) supports large-scale eutrophication which, in addition to degrading water quality, affects air-water CO2 fluxes, oceanic C, N and other nutrient budgets.


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Physical-chemical constraints on cyanobacterial growth in the Oceans</title>
<author>
<name sortKey="Paerl, H W" sort="Paerl, H W" uniqKey="Paerl H" first="H. W." last="Paerl">H. W. Paerl</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Institute of Marine Sciences, University of North Carolina at Chapel Hill, 3431 Arendell Street</s1>
<s2>Morehead City, NC 28557</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Morehead City, NC 28557</wicri:noRegion>
<orgName type="university">Université de Caroline du Nord à Chapel Hill</orgName>
<placeName>
<settlement type="city">Chapel Hill (Caroline du Nord)</settlement>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">00-0054123</idno>
<date when="1999">1999</date>
<idno type="stanalyst">PASCAL 00-0054123 INIST</idno>
<idno type="RBID">Pascal:00-0054123</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">006104</idno>
<idno type="wicri:Area/PascalFrancis/Curation">000066</idno>
<idno type="wicri:Area/PascalFrancis/Checkpoint">005F43</idno>
<idno type="wicri:explorRef" wicri:stream="PascalFrancis" wicri:step="Checkpoint">005F43</idno>
<idno type="wicri:doubleKey">0304-5722:1999:Paerl H:physical:chemical:constraints</idno>
<idno type="wicri:Area/Main/Merge">00D656</idno>
<idno type="wicri:Area/Main/Curation">00C666</idno>
<idno type="wicri:Area/Main/Exploration">00C666</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Physical-chemical constraints on cyanobacterial growth in the Oceans</title>
<author>
<name sortKey="Paerl, H W" sort="Paerl, H W" uniqKey="Paerl H" first="H. W." last="Paerl">H. W. Paerl</name>
<affiliation wicri:level="4">
<inist:fA14 i1="01">
<s1>Institute of Marine Sciences, University of North Carolina at Chapel Hill, 3431 Arendell Street</s1>
<s2>Morehead City, NC 28557</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Morehead City, NC 28557</wicri:noRegion>
<orgName type="university">Université de Caroline du Nord à Chapel Hill</orgName>
<placeName>
<settlement type="city">Chapel Hill (Caroline du Nord)</settlement>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Bulletin de l'Institut océanographique : (Monaco)</title>
<title level="j" type="abbreviated">Bull. Inst. océanogr. : (Monaco)</title>
<idno type="ISSN">0304-5722</idno>
<imprint>
<date when="1999">1999</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Bulletin de l'Institut océanographique : (Monaco)</title>
<title level="j" type="abbreviated">Bull. Inst. océanogr. : (Monaco)</title>
<idno type="ISSN">0304-5722</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Bacterioplankton</term>
<term>Cyanobacteria</term>
<term>Environmental factor</term>
<term>Microorganism growth</term>
<term>Ocean</term>
<term>Physicochemical properties</term>
<term>Population dynamics</term>
<term>Review</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Cyanobacteria</term>
<term>Bactérioplancton</term>
<term>Océan</term>
<term>Multiplication microorganisme</term>
<term>Dynamique population</term>
<term>Facteur milieu</term>
<term>Propriété physicochimique</term>
<term>Article synthèse</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Océan</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Cyanobacteria are significant and at times dominant contributors to estuarine, coastal and open ocean primary production and fixed nitrogen inputs. CO
<sub>2</sub>
and N
<sub>2</sub>
fixation can be controlled by single or combined nutrient supplies, depending on the influence of external vs. internal inputs. Nitrogen limitation characterizes much of the world's oceanic surface waters, providing a vast niche for cyanobacteria capable of N
<sub>2</sub>
fixation. The filamentous planktonic N
<sub>2</sub>
fixers, Trichodesmium and Richelia (endosymbiont in the diatom Rhizosolenia) can form large (< 100's of km
<sup>2</sup>
) surface blooms in nutrient-deplete, oligotrophic open ocean waters. Here, the availability of iron (Fe), a cofactor in the N
<sub>2</sub>
fixing enzyme complex nitrogenase, may control N
<sub>2</sub>
fixation, as shown subtropical W. Atlantic and Caribbean waters. The picoplanktonic (< 5 μm) genera Synechococcus, Synechocystis, and Prochlorococcus are important (i.e., 20 to > 50%) contributors to phytoplankton productivity and biomass. These non N
<sub>2</sub>
fixers rely on small size (i.e., high surface to volume ratio) and efficient light harvesting abilities, to optimize growth in poorly-illuminated, nutrient-rich deep waters. Marine cyanobacteria exhibit various morphological, physiological, and ecological strategies aimed at co-optimizing diazotrophy, photosynthesis and nutrient (N, P, Fe) sequestration. These include; buoyancy regulation to facilitate access to near-surface sunlight (energy) and nutrient-rich deeper water, aggregation as colonies supporting nutrient-exchanging consortial interactions with microheterotrophs and invertebrate grazers, endosymbioses, intracellular nitrogen and phosphorus storage, heterotrophic and photoheterotrophic capabilities. Certain cyanobacterial genera can exploit nutrient-enriched estuaries and seas (e.g. Baltic), sometimes as persistent nuisance (i.e. hypoxia/anoxia-generating, toxic) blooms. If N
<sub>2</sub>
fixing cyanobacteria predominate as planktonic blooms (Nodularia, Aphanizomenon) or benthic mats (Lyngbya, Oscillatoria), or if high rates of external N loading occur, N+P co-limitation or exclusive P limitation may dominate. In non-N
<sub>2</sub>
fixing communities, Fe may synergistically interact with combined N, especially NO
<sub>3</sub>
<sup>-</sup>
, to enhance growth. Increasing anthropogenic N and Fe enrichment (runoff, atmospheric deposition, groundwater) supports large-scale eutrophication which, in addition to degrading water quality, affects air-water CO
<sub>2</sub>
fluxes, oceanic C, N and other nutrient budgets.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Caroline du Nord</li>
</region>
<settlement>
<li>Chapel Hill (Caroline du Nord)</li>
</settlement>
<orgName>
<li>Université de Caroline du Nord à Chapel Hill</li>
</orgName>
</list>
<tree>
<country name="États-Unis">
<region name="Caroline du Nord">
<name sortKey="Paerl, H W" sort="Paerl, H W" uniqKey="Paerl H" first="H. W." last="Paerl">H. W. Paerl</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 00C666 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 00C666 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     Pascal:00-0054123
   |texte=   Physical-chemical constraints on cyanobacterial growth in the Oceans
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024